

Revision Date: 02/21/2012

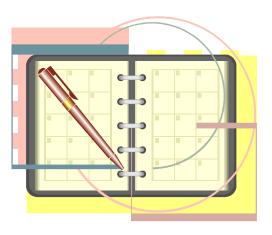
NextGen Concepts and Avionics Technology

Honeywell

The enclosed technical data is export classified as EAR99. Its export is being transmitted under U.S. Export Administration Regulations designation "NLR" (No License Required) and is to be used solely by the individual / organization to whom it is addressed. Diversion contrary to U.S. export laws and regulations is prohibited.

HONEYWELL CONFIDENTIAL: This copyrighted work and all information are the property of Honeywell International Inc., contain trade secrets and may not, in whole or in part, be used, duplicated, or disclosed for any purpose without prior written permission of Honeywell International Inc. All Rights Reserved.

Table of Contents


<u>Description</u> Page

- Regulatory Update
- SBAS / LPV
- RNP
- Data Link (FANS 1/A & PM-CPDLC)
- ADS-B

Agenda

SBAS – LPV Overview

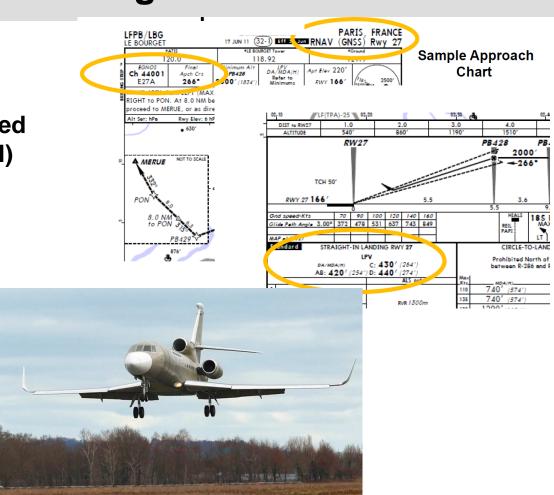
Acronyms

- SBAS Satellite Based Augmentation System
- WAAS Wide Area Augmentation System
- LPV Localizer Performance Vertical
- LP Localizer Performance only (no vertical guidance) minima being developed as well but NOT currently supported by Honeywell platforms
- GBAS(LAAS) Ground Based Augmentation System
- PBN Performance Based Navigation
 - Previously exclusionary to RNP only

SBAS Defined

- Provides GPS signal corrections to give better position accuracy comparable to an ILS Category 1 (precision approach) system
- Use of LPV approaches capitalizes on the inherent accuracy of the SBAS signal and will result in lower approach minimums
- Enables vertical approaches at airports where there are no instrument landing systems
- Although system is functionally capable of LP performance, it has not yet received approval

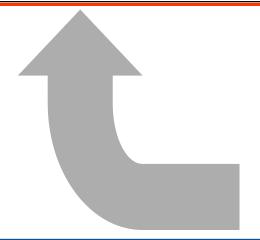
SBAS History

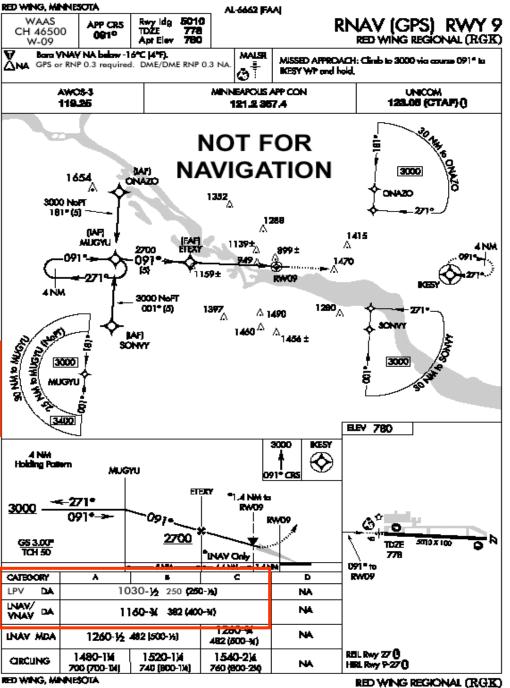

- Prior to SBAS, GPS was not able to provide the accuracy or integrity to CAT 1 minimums
- 2003 WAAS signal was activated for public use
- 2011 WAAS LPV approaches now outnumber ILSs more than 2:1 (more than 2700 LPV approaches published)
- 2012 + Plan is to add 500 approaches per year
 - FAA Website (faa.gov)

7

EGNOS APV Testing and Rollout

- First LPV approaches with certified EGNOS system tested by Dassault F900 EX (EASy II) March 2011
- LPV (APV) approaches to be published in Europe in 2012
 - France 11
 - UK 1
 - Switzerland 2





The LPV Approach

- Currently over 2700 published in the U.S. as of 4Q 2011
- Plan is for 500 per year

LPV	DA	1030 – ½ 250 (250 – ½)
LNAV/ VNAV	DA	1160 - 3/4 382 (400 - 3/4)

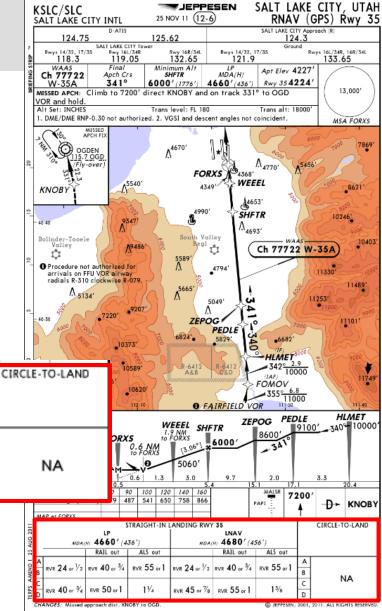
The LP Approach

 Introduced in 2011 in areas that would not support LPV (terrain)

STRAIGHT-IN LANDING RWY 35

165 in effect

4660


24 or 1/2

В

 Not supported by Honeywell platforms at this time

ALS dut

RVR 55

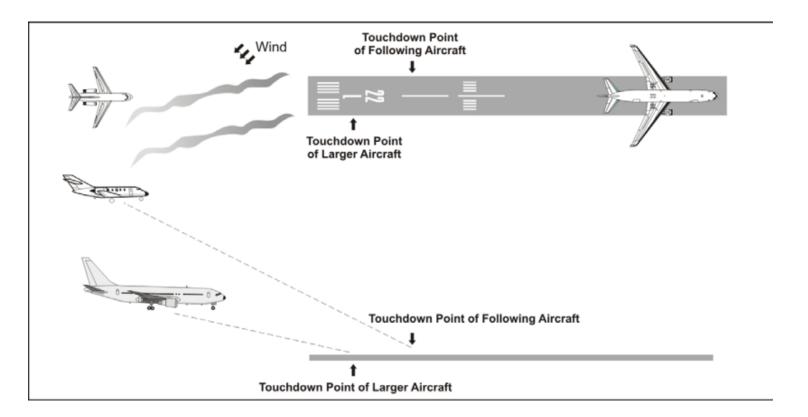
ALS

LNAV

MDA(N) 4680' (456')

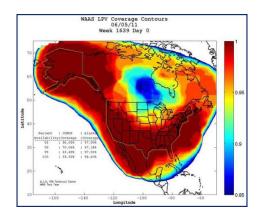
RVR 24 or 1/2 RVR 40 or 3/4

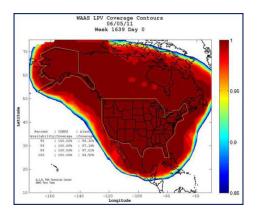
RAJL out


10 © Honeywell International, Inc.

В

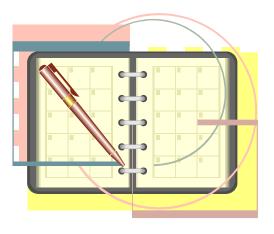
Future of WAAS/SBAS


Wake turbulence avoidance



Future of WAAS/SBAS

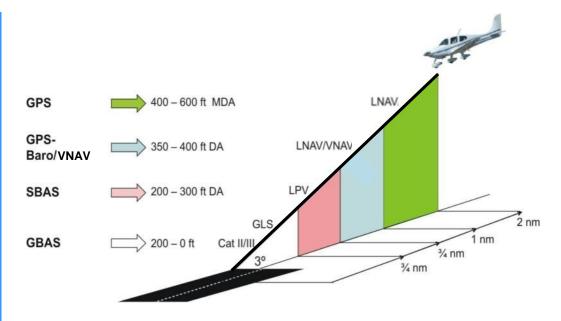
Being upgraded for greater "Iono Robustness"



- Migration to a dual-frequency system by 2018
 - Will allow receivers to directly measure and correct for ionospheric delays
- GBAS testing being implemented at IAH, EWR
 - Part of roadmap to Cat II/III operations

Agenda

Required Navigation Performance (RNP) Overview

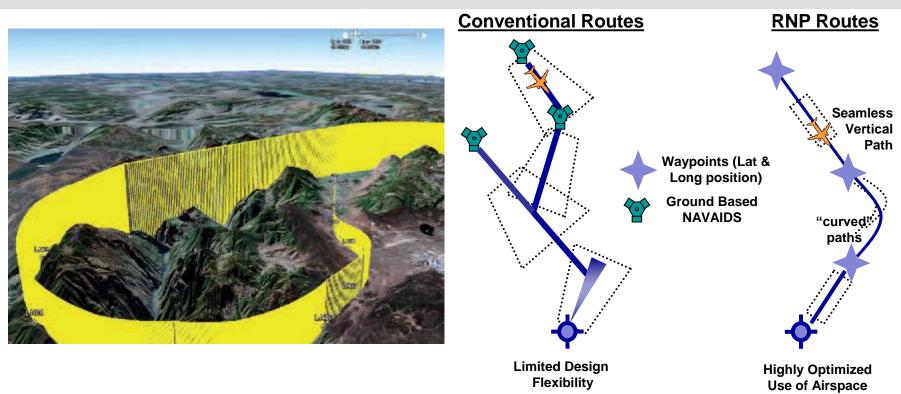


Required Navigation Performance (RNP)

RNP is a statement of the navigation performance necessary for operations within a defined airspace defined in nautical miles


Onboard avionics capable of navigating the aircraft within a tightly specified airspace corridor

RNP AR Definition


RNP AR

- Same as SAAAR Special Aircraft and Aircrew Authorization Required
- Guidance per AC 90-101A and AMC 20-26
- Special approaches which require additional LOA and FAA approval
- Aircraft requires AFM statement detailing compliance to AC 90-101A
- Pilot training currently being conducted at FSI and CAE as an enrichment course (pilots only need one sign off to fly all approaches)

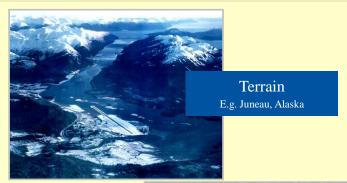
Conventional vs. RNP Route Comparison

- New regulatory guidance defines the move to lower RNP
 - AC 90-101a Approval Guidance for RNP Procedures with AR
 - EASA NPA 2008-14 / AMC 20-26 RNP- Authorization Required

RNP keeps aircraft in a tightly defined corridor

RNP Operational Benefits

Improved Access to Airports & Airspace

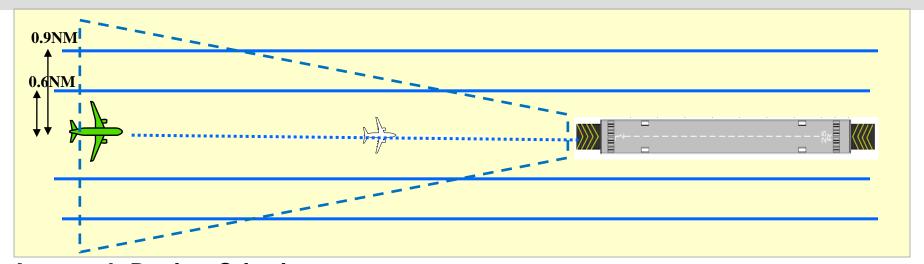

- Obstacle clearance enabling better access to
 - Terrain challenged airports
 - Congested Airspaces
 - Restricted airspace challenged airports
- Lower minimums

Efficiency of Operations

- Time savings
 - Shorter routes
- Fuel savings
- Improved noise footprint

Safety

- Clearly defined lateral and vertical flight paths = stabilized approach
- Enhanced situational awareness
- Missed approach procedures clearly defined



Traffic
E.g. New York Area

Approach Design Criteria

Approach Design Criteria

- For RNP AR (AC 90-101A)
 - Obstacles are assessed within 2 X RNP (2 X 0.3 = 0.6) NM from either side of course

For RNAV GPS

- Obstacles will be assessed within ~3 X RNP (3 X 0.3 = 0.9) NM from either side of course
- Similar to how GPS approaches are designed today

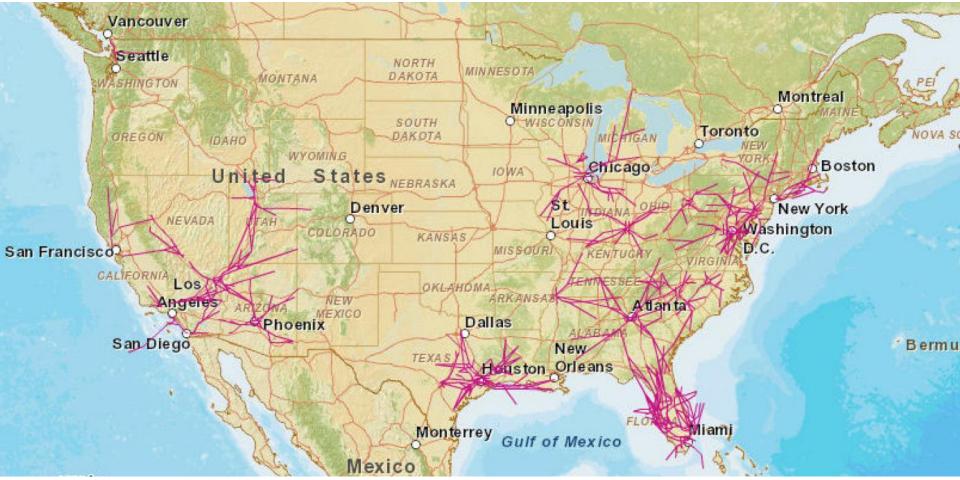
For WAAS LPV

 Obstacles will be assessed with a trapezoidal containment region similar to an ILS

RNAV (RNP) Approaches (Public)

65+ Airports.....289 Approaches

RNAV SIDS


408 SIDS

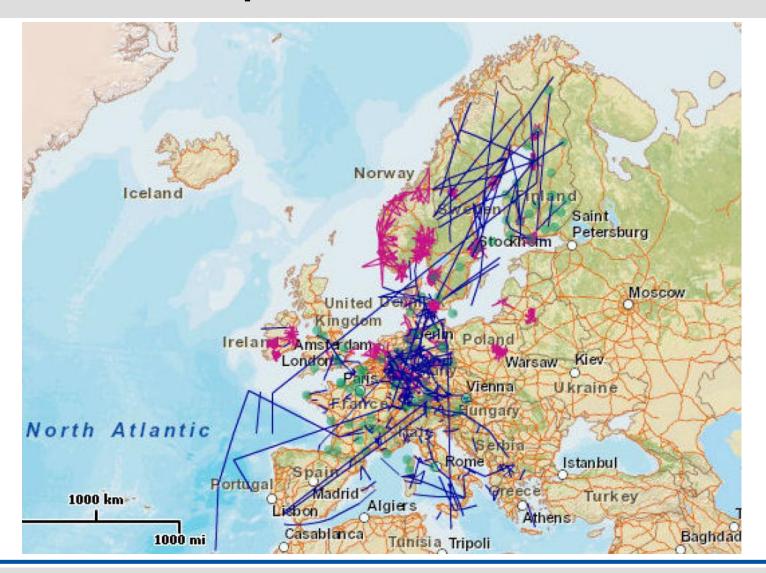
RNAV STARS

367 STARS

21

"Q" and "T" Routes

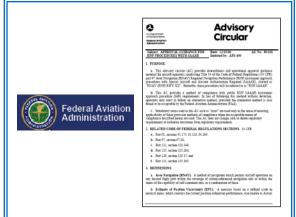
82 Q Routes / 73 T Routes



US all RNAV and RNP

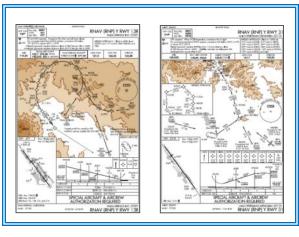
Europe all RNAV and RNP

Getting Operational with RNP AR


Aircraft Equipage

•FMS, IRS, GPS, TAWS

- RNP AR 0.3 and < 0.3 capability
- RF Legs
- Coupled VNAV
- Single IRS
- Dual GPS


Operational Approval

Consultancy Services

- Operational approval submittal package for AMC 20-26 compliance & EASA coordination
- Timely and efficient integration of requirements into current flight operations
- Over 20 operators now approved for FAA RNP AR in US

RNP Operations

Procedure and Database Validation

- Initial validation of all RNP AR procedures
- Data validation every 28 day cycle

Honeywell Go Direct helps operators get Operational Approval for RNP AR

What does it Cost the Operator

Honeywell offers 3 service pricing options

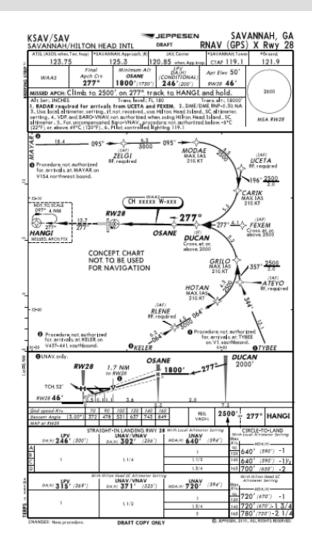
RNP AR Familiarization Service

Price: \$20K

Essential Consultancy

Price: \$53K

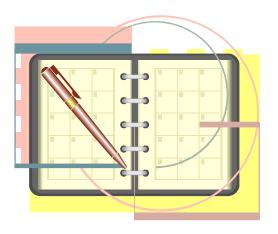
Premium Consultancy


Price: \$99K

Contact Honeywell Go Direct

RNP Basic / Advanced

- New procedures (per AC 90-105) will be developed using basic RNP criteria
 - Terminal Procedures (SIDs and STARs)
 - Basic Approaches Virtually identical to current GPS approaches
 - Advanced Approaches –
 Incorporate curved flight paths
- Aircraft currently approved for AC 90-100A will automatically comply for RNP Basic / Advanced (with certain restrictions....)


Key Differences

	RNP AR <i>AC 90-101A</i>	RNP – Basic <i>AC 90-105</i>	WAAS LPV AC 90-107
	Tighter corridors, lower minima, RF Legs	Practically the same capability you get with GPS today	Lower minima, ILS-Like corridors
Equipment Requirements			
GPS	Dual	Single	Single
WAAS Required	No	No	Yes
IRU Required	Yes	No	No
Operational Requirements			
Curved Paths	Yes	Prior to FAF	No
RNP < 0.3	Yes	No	N/A
Secondary Buffer for Obstacle Clearance	No	Yes	Yes
Operational Approval Required	Yes	No (US Only)	No (US Only)

Agenda

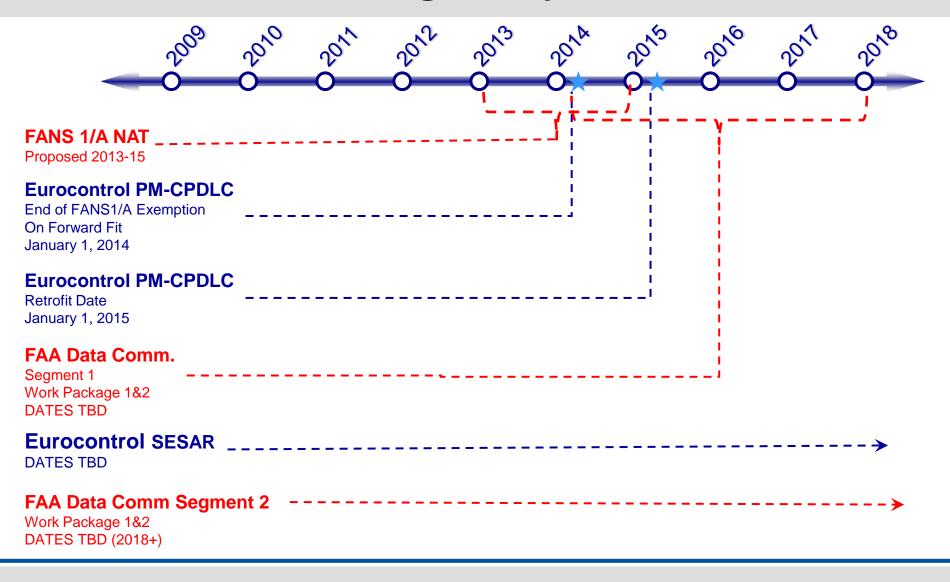
Data Link Overview

Data Link Variants

FANS 1/A

- Uses an early version of CPDLC (AFN protocol) and has been used for almost 25 years as a version of oceanic surveillance and communication by airliners.
- Encompasses two main parts:
 - ➤ Automatic Dependant Surveillance Contract (ADS-C)
 - Controller Pilot Data Link Communication (CPDLC)

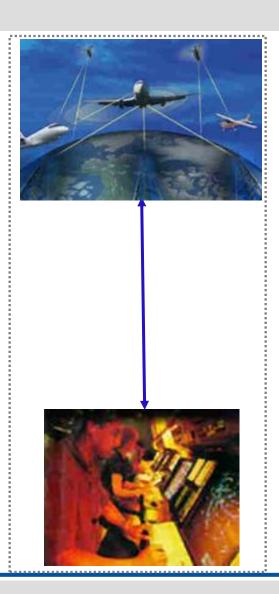
PM CPDLC (Link 2000+)


 PM (protected mode) CPDLC is a higher speed data link service using Protected Mode (PM) CPDLC under the ATN protocol and is being tested in Europe today (Link 2000+ trials).

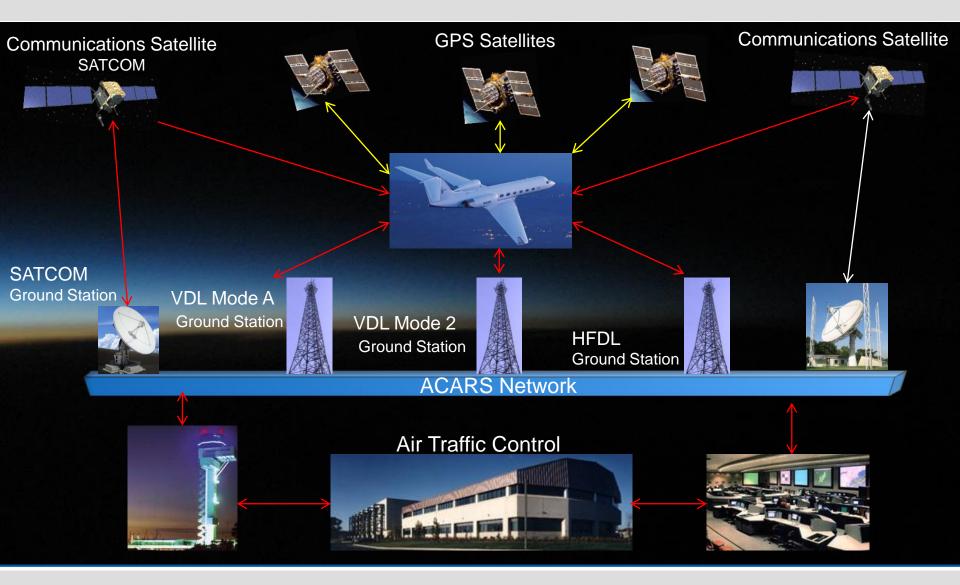
FANS 2

- Hardware that combines FANS 1/A and PM CPDLC into one unit
- Supports both FANS 1/A (oceanic) and PM-CPDLC

Data Link Regulatory Time Lines



31


FANS 1/A Benefits

- Preferred / more direct oceanic routing
- Reduced separation
- Fully automated position reporting
- Digital data link communication with ATC
- Request / receive clearances on (M)CDU
- Auto acceptance of clearances into flight plan
- HF radio used only as backup
 - no noisy comm

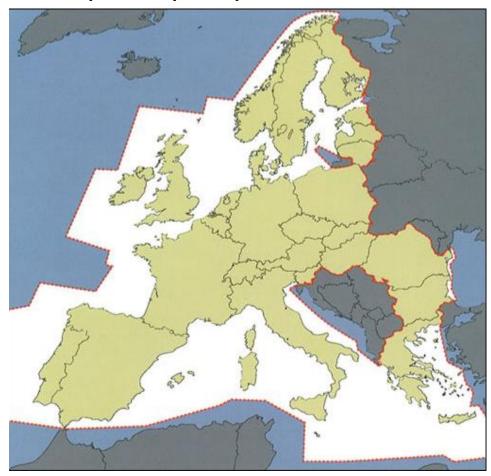
FANS 1/A – Network Architecture

PM CPDLC (Link 2000+)

Link 2000+

- The LINK 2000+ programme is air-ground datalink services implementing ATN to solve sector frequency congestion
- Protected Mode defines an alternative CPDLC protocol for air/ground applications
- Stronger processes against miss-delivery
- Protected Mode (PM) CPDLC is a higher speed data link service in use and being expanded in Europe

Benefits


- Auto-load specific uplink messages into FMS
- Downlink complex route clearance request
- Uplink messages arm FMS automatically
- Downlink / Uplink messages auto-update Flight Data ground systems
- Workload reduction for flight crew and controllers

Link 2000 details at: http://www.eurocontrol.int/link2000

Key Dates to Remember

Designated European Airspace Operation at or above FL285

- As of January 1st 2011 all new aircraft operating above FL285 must be delivered with a compliant system*
- After February 7th 2013 flight restrictions can be imposed
- Exclusion of existing aircraft was extended for new aircraft until January 1st 2014
- Retrofit date February 5th 2015 for all operating above FL285

Aircraft Exemptions under Article 14

Exemptions for aircraft types

- Reaching the end of their production life
- Aircraft produced in limited numbers
- Disproportionate re-engineering costs
- Temporary exemptions only apply to Forward Fit applications
- Temporary exemptions should not impact DLS provisions
- Permanent exemptions should not compromise 75% DLS capability

Exemption Requests (ERQs)

- An Applicant may be an airspace user or manufacturer
- Any exemption request shall be based on the criteria defined in Article 14
- ERQ Requirements and Template made available by the European Commission
- Applicant submits an ERQ to the European Commission either directly or via an appropriate Member State

www.eurocontrol.int/.../2nd%20Decision%20on%20DLS%20Exempt

Article 1 Aircraft Type Exemption List

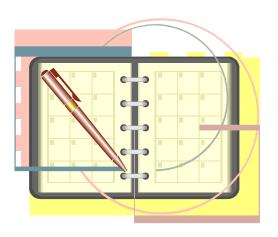
Model	ICAO	Marketing Name
Dassault Falcon 10 and Falcon 100 Dassault Fan Jet Falcon Basic and Series C/D/E/F/G	FA10 FA20	Falcon 10 Falcon 20
Dassault Mystère-Falcon 200, 20GF and 20- C5/D5/E5/F5	FA20	Falcon 20
Dassault Falcon 50EX and Mystère Falcon 50	FA50	Falcon 50
Dassault Falcon 900, 900B, 900C and 900 EX	F900	Falcon 900
Dassault Falcon 2000 and 2000EX	F2TH	Falcon 2000

Article 1 Aircraft Type Exemption List cont;

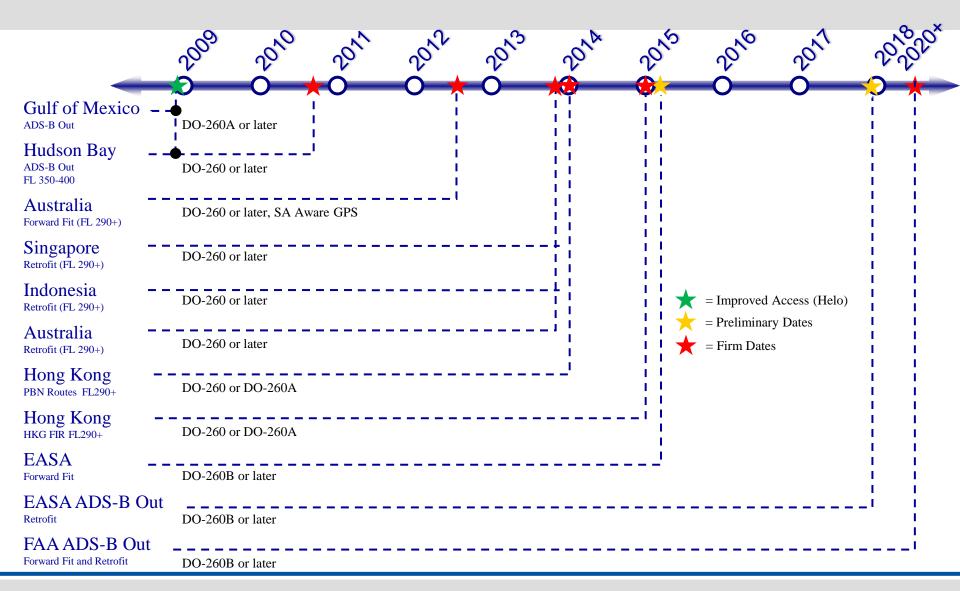
Model	ICAO	Marketing Name
Gulfstream GIV and GIV-SP GLF4		Gulfstream IV
Gulfstream G300	GLF4	Gulfstream 300
Gulfstream G400	GLF4	Gulfstream 400
Gulfstream GV	GLF5	Gulfstream V

Article 2 Aircraft Type Exemption List

Model	ICAO	Marketing Name	Date
Bombardier LEARJET 60 Bombardier LEARJET 45 40XR, 45 and 45XR	LJ60 LJ45	LEARJET 60XR LEARJET 40,	Dec 31, 2012
Bombardier CL-600-2C10 Bombardier CL-600-2D24 Bombardier CL-600-2E25 Bombardier BD-100-1A10 Bombardier CL-600-2B16	CRJ7 CRJ9 CRJX CL30 CL60	CRJ700 CRJ900 CRJ1000 Challenger 300 Challenger 604/605 Variant	
Cessna 525A Cessna 525B Cessna 525C Cessna 560XL	C25A C25B C25C C56X	Citation CJ2+ Citation CJ3 Citation CJ4 Citation XLS+	June 30, 2012


Article 2 Aircraft Type Exemption List cont;

Model	ICAO	Marketing Name	Date
Embraer ERJ 170 – 100LR/ 100STD/200LR/200STD	E170	Embraer 170	Dec 31, 2012
Embraer 190 -100ECJ Embraer ERJ 190 -100IGW/ 100LR/100SR/100STD/200I GW/200LR/200S TD	E190 E190	Lineage 1000 Embraer 190	
Pilatus PC-12/47E	PC12	PC-12 NG	
Piaggio P-180 Avanti II	P180		Dec 31, 2011


Agenda

 ADS-B (Automatic Dependant Surveillance – Broadcast)

ADS-B Out Timeline

42

ADS-B Overview

What is it?

- Intended to replace traditional ATC radar surveillance
- Aircraft transmits position, velocity and other information to groundbased receivers

Deployments

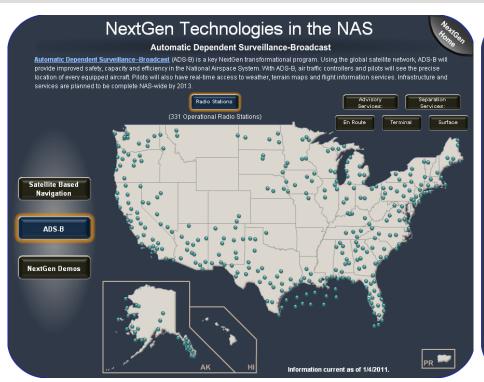
- Canada (including oceanic)
- Gulf of Mexico
- Australia
- China

LOA required for US-registered aircraft operating in Canadian ADS-B

ADS-B Deployments

Hudson Bay

- 35,000 flights per year are participating
- 5NM lateral separation
- 20NM vs 80NM in-trail
- Priority handling and Preferred routes in use
- Plans to make FL350 to FL400 exclusionary airspace
- A FAA LOA and Transport
 Canada OpsSpec is required to operate in this area


ADS-B Deployments

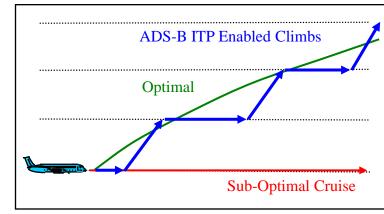
Canadian ADS-B Airspace

USA ADS-B Deployment

NextGen Technologies in the NAS **Automatic Dependent Surveillance-Broadcast** Automatic Dependent Surveillance-Broadcast (ADS-B) is a key NextGen transformational program. Using the global satellite network, ADS-B will provide improved safety, capacity and efficiency in the National Airspace System. With ADS-B, air traffic controllers and pilots will see the precise location of every equipped aircraft. Pilots will also have real-time access to weather, terrain maps and flight information services. Infrastructure and services are planned to be complete NAS-wide by 2013. Radio Stations Satellite Based Navigation NextGen Demos Information current as of 1/4/2011.

• 331 Operational ADS-B Receivers

• Enroute Services


• 1/4/2011

Successful ITP Trials in SOPAC

- Joint FAA/UAL/Honeywell Program
 - Demonstrated operational benefits enabled by the ADS-B In, In Trail Procedures
- Avionics system consists of:
 - Honeywell Traffic Computer, TPA-100B with ADS-B In and ITP capability
 - Honeywell Transponder, TRA-67B with ADS-B Out capability
 - · Goodrich Class 3 EFB running Honeywell ITP display software
- United Airlines will operate approximately 12 Honeywell ITP avionics equipped 747-400 aircraft in the South Pacific (SOPAC) route. Successful trials completed. FAA in final stages of approval.

ADS-B Out Product Planning

Product	Application	DO-260	DO-260A	DO-260B
AESU (A380)	Air Transport		Available	In Process
TRA-67A	Air Transport	Available		Replace with TRA-100B
TRA-100B	Air Transport	-	-	2013
Epic	Regional, Helicopter Business Aviation		Available	In Process
Primus II	Regional Business Aviation		1	In Process
MST-67	Regional Business Aviation		1	Replace with MST-67B
APEX	Business Aviation General Aviation		-1	Planned
KT-73	General Aviation	Available (non-diversity)		Planned
MILACAS	Military Transport	Available - Military unique solution (planned DO- 260 compliance)		

Summary

- New technologies all have industry mandates and operational benefits coming in the next decade (2010 – 2020)
 - SBAS-LPV
 - RNP
 - CPDLC
 - ADS
- Honeywell has planned software and hardware solutions for all of our customers
 - Classic aircraft retrofit include:
 - Gulfstream IV and V, Hawker 800, Challenger 601, Falcon 900B, 900C/EX, Global Express/G-5000, Embraer Legacy 600/650, Citation X, others
 - Primus Epic aircraft include:
 - ➤ Gulfstream 450/550 PlaneView, Falcon F900, 2000 and 7X EASy, Cessna Sovereign, Hawker 4000, others