TETERBORO AIRPORT – CHIEF PILOT MEETING
September 26, 2017 at 11:00 EST
Audio call 888-446-7584 code 7064524
Please mute your phone, questions will be entertained by email.

During the presentations please submit any questions to smarsh@panynj.gov.

Any questions during the webinar will be answered over the next several days via email.
TETERBORO AIRPORT
CHIEF PILOTS MEETING
FALL 2017
AGENDA

1. Winter Operations Report
2. TALPA update
4. TEB - Conceptual Procedure Design
5. Airport Construction Update
6. Seasonal Flight Operations
7. TEB – Letters to Airmen
TEB-144.045 – Storm Water Drainage System Rehabilitation
Teterboro Airport – Seasonal Flight Operations

• Teterboro Airport Annual Traffic, up 3.44% through August
• Fall Flight Activity
• Recommended to notify the FBO of your choice of your flight schedule
• JFK – RWY 4R/22L Closure through November 17th, possible operational impacts to TEB if JFK and LGA utilize the RWY 13 ILS approaches
• Bedminster TFR Impacts
Teterboro Airport – FAA Letters to Airmen

- LTA-TEB-12 - Informal Runway Use Program
- LTA-TEB-13 - VFR Helicopter Routes
- LTA-TEB-14 - Intersection Departures
- LTA-TEB-15 - Published Missed Approach for ILS RWY 19
- LTA-TEB-16 - Land and Hold Short Operations (LAHSO)
- LTA-TEB-17 - Movement and Non Visibility Area
- LTA-TEB-18 - Taxiway B
- LTA-TEB-19 - Teterboro Airport VFR Traffic Pattern
- LTA-TEB-20 - Gate Hold Procedures
- LTA-TEB-21 - VFR Departures Contact Clearance Delivery
- LTA-TEB-23 - Teterboro Two Departure

These Letters to Airmen can be accessed by utilizing the following FAANOTAM Search webpage:

https://notams.aim.faa.gov/notamSearch/
Next meeting:

May 22, 2018 at 11:00am EST

THANK YOU FOR PARTICIPATING!!!!!
Teterboro Airport
Snow & Ice Control
2017-2018 Season

September 26, 2017
Snow & Ice Control Equipment

Equipment
- Multifunction Equipment (plow/broom/blower)
- Heavy duty & Light duty plows
- Rotary blowers

Chemicals & Abrasive Materials
- Potassium Acetate (Liquid)
 - Primary applicator used to prevent ice bonding to pavement
- Sodium Acetate (Solid)
 - Secondary applicator used to melt ice on runway and taxiways
- Sand

All 3 meet FAA-approved specifications.
Snow & Ice Control Equipment

Runway Weather Information System (RWIS)

- In-Pavement Surface Sensors that provide:
 - Pavement Temperature
 - Air Temperature
 - Dew Point
 - Chemical Strength
 - Trends
North Flow Priority - RWY 6

Push Back Area

North Flow Priority Runway 6

- Priority 1
- Priority 2
- Priority 3
South Flow Priority - RWY 19
Snow Removal Criteria

Braking Action Reporting

LOA between TEB ATCT and PANYNJ:

- Any time braking action of **NIL** is reported to ATCT, regardless of aircraft type, that the runway shall be immediately considered **CLOSED** and ATCT shall not permit any further operations on that runway until notified by Airport Operations.

- Airport Operations will immediately inspect runway and make determination on runway status.
Communication & Safety

AOA Ops Supervisor (TEB 99)

- Single POC between Airport Ops, Airport Mx & ATCT
- Continuously monitor & assess runway conditions
- Issue all Field Condition Reports via NOTAM system

Airport Ops Snow Desk (TEB 98)

- Coordinate runway closures with ATCT and TRACON
- Coordinate De-Icing Program between ATCT & FBOs
- Monitor PIREPs to identify deteriorating runway conditions
Aircraft Deicing Program

Deicing Program

- The Formal Deicing Program is *initiated* when a pilot requests to be deiced during a *freezing* or *frozen precipitation* event
- FBO will advise Airport Ops of the request

Deicing Program Notification

- Once an FBO has notified Airport Ops with the need to deice an aircraft, notification is made by Airport Ops to all FBO’s and ATCT
Snow Removal Summary

- Reviews conducted after each event
- Goal is to measure the snow removal efforts from the customer’s perspective
- Specifics from each event are presented at the monthly Manager’s meetings from November through April
Thank You
TALPA
Takeoff & Landing Performance Assessment

Impact to Airport Snow & Ice Control

Teterboro Airport
September 26, 2017
Background

- FAA chartered an Aviation Rulemaking Committee (ARC) to address Take-Off & Landing Performance Assessment (TALPA).

- Goal was to reduce the risk of runway overrun accidents & incidents due to runway contamination.

Key Changes

- Standardized terms for contaminants; the decommissioning of terms such as ‘patchy’, ‘trace’, and ‘thin’

- Airport operators may continue to conduct runway friction surveys (as part of runway condition assessment), the dissemination of friction Mu values via the NOTAM system are no longer acceptable

- Airports are now strongly encouraged to report a ‘Wet Runway’ when more than 25% of the runway surface is covered by visible dampness or water (1/8” or less in depth)
Runway Condition Assessment Matrix (RCAM)

- Replaces subjective judgements of runway conditions with objective measurements and assessments based on:
 - Runway Contaminant Coverage
 - Type of Contaminant
 - Depth of Contaminant
 - Outside Air Temperature (OAT)
Runway Condition Assessment Matrix (RCAM)

<table>
<thead>
<tr>
<th>Runway Condition Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>6</td>
</tr>
<tr>
<td>Wet (includes damp and 1/8 inch depth or less of water)</td>
<td>5</td>
</tr>
<tr>
<td>Slush</td>
<td>4</td>
</tr>
<tr>
<td>Dry Snow</td>
<td>3</td>
</tr>
<tr>
<td>Wet Snow</td>
<td>2</td>
</tr>
<tr>
<td>P F (35°F) and colder outside air temperature:</td>
<td>1</td>
</tr>
<tr>
<td>Compact Snow</td>
<td>-</td>
</tr>
<tr>
<td>Slippy when wet (wet runway)</td>
<td>-</td>
</tr>
<tr>
<td>Dry snow or wet snow (any depth) over compacted snow</td>
<td>-</td>
</tr>
<tr>
<td>Greater than 1/8 inch depth at:</td>
<td>0</td>
</tr>
<tr>
<td>Dry snow</td>
<td>-</td>
</tr>
<tr>
<td>Wet snow</td>
<td>-</td>
</tr>
<tr>
<td>Greater than 1/8 (3mm) depth at:</td>
<td>-</td>
</tr>
<tr>
<td>Water</td>
<td>-</td>
</tr>
<tr>
<td>Slush</td>
<td>-</td>
</tr>
<tr>
<td>Ice</td>
<td>-</td>
</tr>
<tr>
<td>Wet ice</td>
<td>-</td>
</tr>
<tr>
<td>Slush over ice</td>
<td>-</td>
</tr>
<tr>
<td>Water over compacted snow</td>
<td>-</td>
</tr>
<tr>
<td>Dry snow or wet snow over ice</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Downgrade Assessment Criteria</th>
<th>Reported Braking Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle deceleration or directional control is normal</td>
<td>Good</td>
</tr>
<tr>
<td>Braking deceleration Off directional control is between Good and Medium</td>
<td>Good to Medium</td>
</tr>
<tr>
<td>Braking deceleration is noticeably reduced for the wheel braking effort applied Off directional control is noticeably reduced</td>
<td>Medium</td>
</tr>
<tr>
<td>Braking deceleration is significantly reduced for the wheel braking effort applied Off directional control is significantly reduced</td>
<td>Medium to Poor</td>
</tr>
<tr>
<td>Braking deceleration is non-existent for the wheel braking effort applied Off directional control is uncertain</td>
<td>Poor</td>
</tr>
<tr>
<td>Nil</td>
<td>-</td>
</tr>
</tbody>
</table>
Runway Condition Assessment Matrix (RCAM)

- More objective method of reporting runway surface conditions
 - Tied directly to contaminant type and depth categories

- These categories have been determined by aircraft manufacturers to cause specific changes in aircraft takeoff, landing and braking performance
Runway Condition Assessment Matrix (RCAM)

- Flight crews can better correlate reported runway surface conditions to contaminated landing performance data supplied by aircraft manufacturer
- Flight crews will receive runway surface condition reports in a consistent and standardized format from all airports
- Flight crews will have more detailed info to make operational decisions
Runway Condition Codes (RwyCC)

- RwyCC are codes generated for each runway third and will allow pilots to interpret the runway condition in a standardized format based on aircraft performance data.

- RwyCC is only generated when contaminants are present on greater than 25% of the maintained portion of the runway surface.
Runway Condition Codes (RwyCC)

<table>
<thead>
<tr>
<th>Runway Condition Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>6</td>
</tr>
<tr>
<td>Wet (includes Damp and 1/8 inch depth or less of water)</td>
<td>5</td>
</tr>
<tr>
<td>Slush</td>
<td></td>
</tr>
<tr>
<td>Dry Snow</td>
<td></td>
</tr>
<tr>
<td>Wet Snow</td>
<td></td>
</tr>
<tr>
<td>0°F (-18°C) and Colder outside air temperature: Compacted Snow</td>
<td>4</td>
</tr>
<tr>
<td>Slippery When Wet (wet runway)</td>
<td>3</td>
</tr>
<tr>
<td>Dry Snow or Wet Snow (Any depth) over Compacted Snow</td>
<td></td>
</tr>
<tr>
<td>Greater than 1/8 inch (3mm) depth or less of: Dry Snow</td>
<td></td>
</tr>
<tr>
<td>Wet Snow</td>
<td></td>
</tr>
<tr>
<td>Warmer than 0°F (-18°C) outside air temperature: Compacted Snow</td>
<td>2</td>
</tr>
<tr>
<td>Greater than 1/8 inch (3mm) depth or less of: Water</td>
<td></td>
</tr>
<tr>
<td>Slush</td>
<td></td>
</tr>
<tr>
<td>Ice</td>
<td>1</td>
</tr>
<tr>
<td>Wet Ice</td>
<td></td>
</tr>
<tr>
<td>Slush over ice</td>
<td></td>
</tr>
<tr>
<td>Water over Compacted Snow</td>
<td></td>
</tr>
<tr>
<td>Dry Snow or Wet Snow over ice</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vehicle Deceleration or Directional Control Observation</th>
<th>Pilot Reported Braking Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braking deceleration is normal for the wheel braking effort applied AND directional control is normal.</td>
<td>Good</td>
</tr>
<tr>
<td>Braking deceleration OR directional control is between Good and Medium.</td>
<td>Good to Medium</td>
</tr>
<tr>
<td>Braking deceleration is noticeably reduced for the wheel braking effort applied OR directional control is noticeably reduced.</td>
<td>Medium</td>
</tr>
<tr>
<td>Braking deceleration OR directional control is between Medium and Poor.</td>
<td>Medium to Poor</td>
</tr>
<tr>
<td>Braking deceleration is significantly reduced for the wheel braking effort applied OR directional control is significantly reduced.</td>
<td>Poor</td>
</tr>
<tr>
<td>Braking deceleration is minimal to non-existent for the wheel braking effort applied OR directional control is uncertain.</td>
<td>Nil</td>
</tr>
</tbody>
</table>
For the purpose of generating RwyCC, a runway is considered contaminated when greater than 25% of the maintained portion of the runway surface is covered by frost, ice, any depth of snow, slush or water.

When runway contaminants exist, but overall coverage is 25% or less, the contaminants will still be reported, but a RwyCC will not be generated.
Outside Air Temperature (OAT)

- Used to determine the correct RwyCC for Compacted Snow when:
 - OAT is above 5°F (−15°C)
 - OAT is 5°F (−15°C) or colder

- Airport Operators should exercise a heightened frequency of runway assessments if temperatures are near freezing and warmer 26.6°F (−3°C)
Other Prescribed Actions

- A NIL PIREP, or NIL runway assessment by the airport operator, requires that the runway be closed before the next flight operation
 - The runway must remain closed until the airport operator is satisfied the NIL condition no longer exists
- When previous PIREPs have indicated GOOD or MEDIUM braking action, two consecutive POOR PIREPs should be taken as evidence that surface conditions may be deteriorating and require the airport operator to conduct a runway assessment
Dry snow is falling

Rwy 6 is 100% covered with up to 1/8 inch dry snow

OAT 18°F
FICON NOTAMS

!TEB XX/XXX TEB RWY 19 FICON 3/3/3 75 PRCT
1/4IN WET SN DEICED LIQUID 100FT WID
OBSERVED AT 1610121752. 1610121751–
1610131751

- Rwy 19 is 75% covered with wet snow
- Rwy 19 was de-iced 100 FT wide (liquid) full length at 1752Z
- OAT 29°F
FICON NOTAMS

!TEB XX/XXX TEB RWY 06 FICON 5/5/5 100 PRCT 1/8IN SLUSH OBSERVED AT 1610101842. 1610101843–1610111843

- Wet snow falling
- Rwy 6 is 100% covered with up to 1/8 inch of slush
- OAT 32°F
FICON NOTAMS

!TEB XX/XXX TEB RWY 19 FICON 2/2/2 100
PRCT 1/4IN SLUSH OBSERVED AT 1610101904.
1610101856–1610111856

- Wet snow is falling
- Rwy 19 is 100% covered with up to ¼ inch slush
- OAT 32°F
FICON NOTAMS

!TEB XX/XXX TEB RWY 24 FICON 5/5/5 50 PRCT WET OBSERVED AT 1610101922. 1610101922–1610111922

- Light rain is falling
- Rwy 24 is 50% covered wet
- OAT 56°F
THANK YOU
Runway Safety Action Team (RSAT)

Annual RSAT meeting for Teterboro (TEB) Airport
Runway Safety Action Team (RSAT) Meeting Agenda

Welcome to the team - Introduction of team members
- Gary Palm - FAA Air Traffic Manager - TEB ATCT
- Scott Marsh – Airport Manager – TEB Airport
- Stakeholders - Self Introductions (please sign roster)

Runway Safety briefing
- RSAT Process
- Definitions and Statistics
- Action item review
- Local incident history

Open discussion
- Stakeholder / user perspective
- Identify risk factors or current initiatives

Develop Runway Safety Action Plan (RSAP) / develop action items

Adjournment

Federal Aviation Administration
What is an RSAT meeting?

• Annual meeting of local stakeholders

• Team chaired by Air Traffic Manager in cooperation with Airport Management

• NEED: Active participation by all users/stakeholders through input

• GOAL: Identify and reduce the risk of runway incursions/excursions

• Opportunity to take an objective look at your airport

• Acknowledge that there is room for improvement
National Statistics

RUNWAY INCURSIONS BY TYPE

1369 RUNWAY INCURSIONS
- 62% Pilot Deviation
- 20% ATC Incident
- 18% Vehicle/Pedestrian

17 A&B EVENTS
- 53% ATC Incident
- 41% Pilot Deviation
- 6% Vehicle/Pedestrian

PART 121 OPERATORS

FY2016 Data
Category A + B Incursions

Category A&B Runway Incursions
FY2000 to FY2015

Number of Category A&B RIs
Airport Operations (millions)
8/31/2016 12:00:00 AM

FY2015 Target Rate is 0.395

Federal Aviation Administration
Published HOT SPOTS

EXTRA VIGILENCE
Required by ALL!

Federal Aviation Administration
Hot Spot HS-1: TWY B between RWY 01–19 and Rwy 06–24
Hot Spot HS-2: TWY L at 6/24
Hot Spot HS-3: Twy G at Rwy 06–24
Area of ATC focus: RWY 19 & TWY Q
Area of ATC focus: Intersection RWY 1 & RWY 6
Area of ATC focus: RWY 19 & TWY L
Local Incident History

<table>
<thead>
<tr>
<th>Year</th>
<th># Surface incidents</th>
<th>Published Hot Spot HS-1 Taxiway “B” incidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2014</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2015</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Federal Aviation Administration
National concern: Wrong surface operations

• Examples (not all necessarily apply to TEB):

 • Taxiway takeoff / landings
 • wrong runway takeoff / landings
 • wrong airport!
 • Pics of LNK, MDW, ISP, HNL, etc.
 • Look for Teri Biggo verbiage
 • Bullets / Tips – Airport
 • Airport Diagram!
 • Check heading!
Hot Spot HS-2: Example incursion (pending) 2017:
TEB event: Wrong surface operation

- Event Summary –
- SEPTEMBER 16, 2016 AT 0113Z, (aircraft), A C172 WAS READY TO DEPART VFR FROM RUNWAY 19 AT INTERSECTION Q.
- WHEN (aircraft) WAS ISSUED TAKEOFF CLEARANCE, THE AIRCRAFT MADE A RIGHT TURN ON TAXIWAY L AND BEGAN TO ROLL SOUTHBOUND.
- THE LOCAL CONTROLLER IMMEDIATELY CANCELLED (aircraft), TAKEOFF CLEARANCE, AND (aircraft) STOPPED ROLLING SOUTH ON TAXIWAY L. THE PILOT WAS REORIENTED AND DEPARTED RUNWAY 19 FROM TAXIWAY Q WITHOUT FURTHER INCIDENT.
TEB event:
Read-Back/Hear-Back

- Event Summary –
- 10/12/2016 (company) two tugs, towing two aircraft, were instructed by Ground Control to **hold short of Runway 19** at Taxiway Golf.
- The lead tug repeated **cross Runway 19 and ATC did not correct the error.**
- The tugs crossed Runway 19 and an inbound BE33 arrival, was **issued go-around instructions approximately .33 NM from the landing threshold.**
- There is a **shared responsibility** for the error between ATC and the tug driver. The V/PD was processed and the Runway Incursion (RI).
TEB event: Controller / Procedural error

- Event Summary –

- 11/17/2016 – Tower Ground Control incorrectly issued runway crossing instructions and (aircraft) crossed the Runway Hold Position Markings for Runway 19 at Taxiway Quebec.
- (Aircraft) was correctly on departure roll on Runway 19.
- The crossing-aircraft pilot stopped beyond the hold lines but before the runway edge line, after observing the oncoming departing aircraft.
- Closest proximity between the aircraft was approximately 100 feet as the departure passed.
2016 Causal Factors

• Causal Factors: ALL INCIDENTS; no accidents.
• CRM
• Location awareness
• Statistically rare: Controller / procedural error
• Or….distracted, unfamiliar, equipment issues or combinations (links in the chain).

Continuous issues each year
2016 -2017 RSAP Accomplishments

- Develop & add to Tower Training Simulator (TSS): unexpected vehicle/aircraft operations. Incorporated into the TSS program.

- Perimeter road under construction and use procedures under development. *Operational June 1, 2016 (South End Only)

- Continue efforts to reduce vehicle runway crossings and sustain zero incident base-line. Twy Bravo procedure successful.
Existing Action Item Review: 2017 Taxiway B / Project

PROJECT DATES
- Bid February 2017
- Construction 2018
2016 RSAP Objectives (review)

Implemented new ATC procedures for TWY Bravo on January 18, 2015.

- When landing RWY 6 and departing RWY 1.
- Arrivals destined for West side of airport are instructed to exit at the end of RWY 6. (Into TWY ‘A’ and the ALPHA PAD).
- ATC is requesting pilots plan no delay on the runway after landing to assist in expediting traffic.
- These procedures were made permanent July 2015.
- Since inception:

 ZERO Runway Incursions associated with TWY B.
2016 RSAP Objectives (continued)

- Develop final phase (North end) of the perimeter road construction & ATC procedures.
- South end completed and in use.
- Restricted to OPS & FAA vehicles.
Conclusion

We continue to work on increasing safety and eliminating the causal factors that contribute to unsafe events; improving procedures, airport design, training and awareness programs however, we must work together as a team and make every effort to reach a ZERO incident(s) goal and sustain it.

Your input is a vitally important catalyst for change.
Take action, submit ideas, report issues and never assume someone else will take corrective measures or fix the problem.

COMMENTS AND QUESTIONS..................

Federal Aviation Administration
Pilot Feedback/Discussion

• Does the ATCT do anything that could make taxi, landing or takeoff more difficult for pilots?

• Is there anything that can be done to make things better and safer?
 • Voice cadence too fast?
 • Late runway and/or routing changes?
 • Too many instructions at once?
 • Inconsistent use of hold short?
 • Gives instructions during difficult phase of flight?
ATC Feedback/Discussion

- Is there anything that pilots do that can make the ATC job more difficult?

- Is there anything that can be done to make things better and safer?
 - Calling tower from a location where you can’t be seen?
 - Failure to readback call sign?
 - Failure to identify location?
 - Other items?
Open discussion of problems

• Surface safety problems
• Signage or lights difficult to see
• Communications problems
• Areas where pilots ask for help
• ATCT requests that are difficult for pilots
• Issues may be relayed through Teterboro Users Group (TUG) bi-monthly meetings or www.teterborousersgroup.org
• And, directly to ATC at 201-288-1889
Helpful web site and email address

Construction status Web Site:
- https://nfdc.faa.gov/xwiki/bin/view/NFDC/Construction+Notices
- Use the Chrome browser for better viewing

FAA’s Airport Construction Advisory Council email address:
- Constructioncouncil@faa.gov
Runway Safety Action Team Meeting Feedback

This file includes fillable form fields. You can print the completed form and save it to your device or Acrobat.com

Use the button in the upper right to Submit the form
TEB Conceptual Procedure Designs

Presented to: Teterboro Users Group - TUG
By: FAA
Date: September 20, 2017
TEB RNAV Transition to ILS RWY 19
TEB RNAV Transition to ILS RWY 19
TEB RNAV (GPS) RWY 24
TEB RNAV (RNP) RWY 19
TEB RNAV (GPS) X RWY 19 (Offset)

Replaces Quiet Visual
TEB RNAV (GPS) X RWY 19 (Offset)

Replaces Quiet Visual
TEB RNAV (GPS) X RWY 19 (Offset)

Replaces Quiet Visual
WAAS approaches to LPV Y minima were intentionally designed as angular approaches to mimic ILS approaches

- Is TERPS Criteria different for ILS and LPV Y?
 - Today, the Criteria is somewhat similar with the exception for the missed approach secondary evaluation area dimensions.
 - In 2009, when the LPV Y was developed, the LPV, under the FAA Order 8260.50 design criteria (issued 2007, cancelled 2012), applied a sloped obstacle clearance surface which adversely impacted minimums when compared to ILS minimums.
• The ILS 6 and the LPV Y 6 are designed to begin at DANDY @ 1500’ above mean sea level and descend on a 3-degree glideslope/glidepath:

 ▪ Why does the ILS give much better minimums than the LPV Y (200’ vs. 363’)?

 The difference is due to the criteria at the time the procedures were developed. There is a NOTAM for the ILS to a 273’ Decision Altitude (DA). If they were developed and published today, they should have the same DA.

 ▪ Why are the missed approaches so different?

 The ILS missed approach criteria allows the aircraft to be hand flown (tighter turns) and to intercept courses; whereas, when the RNAV (GPS) Y RWY 6 was developed, the criteria at the time only allowed for fix-to-fix development which required much softer turns. Current criteria would allow for better harmonization of the ILS and RNAV Y RWY 6 missed approach designs.
• The ILS 19/LPV 19: Why does the LPV offer better minima than the ILS (212’ vs. 300’)?
 The DA is adjusted so aircraft would execute a missed approach by turning and initiating a climb 0.8 miles prior to the threshold so the aircraft is able to intercept TEB R-278.

• Why should there be two different FAF’s (TUGGZ vs. NYGTS)?
 As addressed previously, it was based on the criteria when the procedures were developed.

• Why the two different missed designs?
 As addressed previously, it was based on the criteria when the procedures were developed.

• Why are the RNAV (GPS) LPVs not overlays of the ILS Rwy 6 and 19? As addressed previously, it was based on the criteria when the procedures were developed.